

Review of evidence concerning the contamination of wildlife and the environment arising from the use of lead ammunition

Roger Quy

Wildlife Management Programme Sand Hutton, York

Scope of the review

- Lead ammunition
 - Shotgun pellets
 - Bullets
 - Airgun pellets
- Environmental fate of spent ammunition
 - Soils, water, plants
 - Wildlife birds, mammals
 - Humans contaminated game
- Remedial measures
 - Immobilisation
 - Recovery and recycling
 - Non-toxic ammunition

Where the studies were carried out

• 300 peer-reviewed articles, Government Agency reports.

Concern about lead ammunition

- Worldwide
 - USA, Canada, Europe, Australia/NZ, Japan, Korea, Argentina (first report 2009)
- First recorded over 100 yrs ago
 - Calvert, 1876
 - Grinnell, 1894

Fate of lead

- Universal contaminant, occurs naturally
- No known biological function
- In soils, complete transformation of metallic lead into lead compounds in 100-300 years, 50% in 40-70 years.
- Lead much more soluble under acidic conditions (pH<6.0). (pH in gizzard of Bald eagle 1.3, Snowy owl 2.5, duck 2.1)
- High CaCO₃, Fe, Al, P reduce lead mobility

Shooting activities

- Wildfowling
 - Ducks, geese
- Game shooting
 - Pheasants, partridges, grouse
 - Deer, wild boar
- Pest control
 - Rabbits, rodents, pigeons
- Target shooting

Wetlands - seasonal

Farmland, forests, moorland – seasonal, all year (pests, wild boar)

Designated shooting ranges – all year

Source of contamination

- Spent pellets
- Embedded shot/bullet fragments
- Biol-incorp lead
- Spent bullets

Primary poisoning of birds – pellets ingested as grit or mistaken for seeds. Plants absorb dissolved lead through roots.

Secondary poisoning of raptors, humans (mammalian predators & scavengers?)

Abrasion and weathering leads to contamination of soils and groundwater. Lead dust adheres to leaf surface.

- Wetlands
 - 300,000/ha
 - >2,000,000/ha
- Game-shooting
 - 107,639/ha
 - 560,000/ha
- Trap & skeet
 - 3.7 x 10⁹/ha

Densities vary due to:

Core depth
Time of year
Size of sieve
Size of shot-fall zone

Lead shot ban for wildfowling

- Came into force in England in 1999. Effect unknown, compliance 'low'.
- Nationwide ban in the USA in 1991, by 1997
 estimated that 1.4 million of 90 million ducks spared
 from fatal lead poisoning. Compliance considered
 'high'.
- Similar bans in Canada, most of Europe, Australia,
 New Zealand.
- Most Governments still allow lead ammunition for other forms of hunting.

- Ingestion rates tend to be lower compared with wildfowl.
- Low rates may be deceptive higher rates found when non-toxic shot used.
- More rapid voiding of pellets.
- Raptors can expel shot/bullet fragments via regurgitated pellets.
- Kestrels expelled shot after 1 day, but bald eagles retained shot for up to 48 days.
 - Dust-sized shot/bullet fragments in gut piles and unretrieved bodies can be rapidly dissolved and absorbed.

- Greatest risk for communities that depend heavily on game for subsistence.
- Risk associated more with embedded lead rather than biologically-incorporated lead.
- Traditional recipes may help dissolve lead fragments (e.g. use of vinegar).
- Difficult to detect and remove all shot/bullet fragments.
- No 'safe' level of lead.

- Reducing availability
 - Cultivation to bury pellets
 - Adding phosphorus to reduce lead solubility
 - Liming to raise pH
 - Phytostabilisation to bind lead.
- Recovery and recycling
 - Rubber granule traps, shot curtains
 - Vacuuming
 - Hydrodynamic, density or gravity separation

Reducing exposure

- Encourage or compel use of 'non-toxic' ammunition.
 - Steel
 - Bismuth
 - Tungsten composites
 - Copper/tungsten/tin bullets

Conclusions

- Problem has been present for decades
- Mass die-offs rare, perception is 'no problem'
- Lack of bodies hides the scale of the problem
- Site-specific factors determine degree of risk
- Population effects of lead poisoning unknown
- Raptor pops. naturally small, slow breeding & susceptible to increases in adult mortality
- Lead poisoning one of many mortality factors
- Risks to humans from contaminated game?